简介概要

基于特征选择ELM的乳腺肿块检测算法

来源期刊:东北大学学报(自然科学版)2013年第6期

论文作者:王之琼 康雁 于戈 赵英杰

文章页码:792 - 796

关键词:极限学习机;遗传选择;影响值选择;序列前向选择;

摘    要:乳腺肿块检测是防治乳腺癌的有效途径,基于乳腺X射线图像特征模型的极限学习机(ELM)分类算法已被应用于计算机辅助检测乳腺肿块中.针对由于特征间的依赖性导致的ELM学习效率和检测准确度低的问题,提出了基于特征选择ELM的乳腺肿块检测算法.利用影响值选择、序列前向选择和遗传选择等方法进行特征选择,进而利用该结果提高ELM的性能.通过490例来自辽宁省肿瘤医院的乳腺X射线图像的实验表明,基于特征选择ELM的乳腺肿块检测算法能有效提升乳腺肿块检测的效果,其中以遗传选择对ELM性能提升最明显.

详情信息展示

基于特征选择ELM的乳腺肿块检测算法

王之琼1,2,康雁1,于戈2,赵英杰3

1. 东北大学中荷生物医学与信息工程学院2. 东北大学信息科学与工程学院3. 辽宁省肿瘤医院影像科

摘 要:乳腺肿块检测是防治乳腺癌的有效途径,基于乳腺X射线图像特征模型的极限学习机(ELM)分类算法已被应用于计算机辅助检测乳腺肿块中.针对由于特征间的依赖性导致的ELM学习效率和检测准确度低的问题,提出了基于特征选择ELM的乳腺肿块检测算法.利用影响值选择、序列前向选择和遗传选择等方法进行特征选择,进而利用该结果提高ELM的性能.通过490例来自辽宁省肿瘤医院的乳腺X射线图像的实验表明,基于特征选择ELM的乳腺肿块检测算法能有效提升乳腺肿块检测的效果,其中以遗传选择对ELM性能提升最明显.

关键词:极限学习机;遗传选择;影响值选择;序列前向选择;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号