简介概要

Improving the Intermittent Discharge Performance of Mg–Air Battery by Using Oxyanion Corrosion Inhibitor as Electrolyte Additive

来源期刊:Acta Metallurgica Sinica2016年第11期

论文作者:Yan-Chun Zhao Guang-Sheng Huang Gui-lin Gong Ting-Zhuang Han Da-Biao Xia Fu-Sheng Pan

文章页码:1019 - 1024

摘    要:A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that the presence of 0.1 wt% Li2CrO4in the Na Cl electrolyte reduced enormously the corrosion current density of the tested AZ31 Mg alloys.According to the intermittent discharge tests, the use of 0.1 wt% Li2CrO4 as electrolyte additive increased the anode efficiency of the Mg–air battery by 28.4%. The addition of 0.1 wt% Li2CrO4reduced the anode self-corrosion rate of the battery in the intermittent stage effectively. The product film after discharge was observed by scanning electron microscope, and the Mg–air battery containing 0.1 wt% Li2CrO4has a loose product film, which is beneficial to its discharge performance. So using Li2CrO4 as electrolyte additive could improve the intermittent discharge performance of Mg–air battery. And the use of oxyanion corrosion inhibitor as electrolyte additive may be an excellent way to improve the intermittent discharge performance of Mg–air battery.

详情信息展示

Improving the Intermittent Discharge Performance of Mg–Air Battery by Using Oxyanion Corrosion Inhibitor as Electrolyte Additive

Yan-Chun Zhao1,2,Guang-Sheng Huang1,2,Gui-lin Gong1,2,Ting-Zhuang Han1,2,Da-Biao Xia1,2,Fu-Sheng Pan1,2

1. State Key Laboratory of Mechanical Transmission, College of Materials Science and Engineering, Chongqing University2. National Engineering Research Center for Magnesium Alloys, Chongqing University

摘 要:A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that the presence of 0.1 wt% Li2CrO4in the Na Cl electrolyte reduced enormously the corrosion current density of the tested AZ31 Mg alloys.According to the intermittent discharge tests, the use of 0.1 wt% Li2CrO4 as electrolyte additive increased the anode efficiency of the Mg–air battery by 28.4%. The addition of 0.1 wt% Li2CrO4reduced the anode self-corrosion rate of the battery in the intermittent stage effectively. The product film after discharge was observed by scanning electron microscope, and the Mg–air battery containing 0.1 wt% Li2CrO4has a loose product film, which is beneficial to its discharge performance. So using Li2CrO4 as electrolyte additive could improve the intermittent discharge performance of Mg–air battery. And the use of oxyanion corrosion inhibitor as electrolyte additive may be an excellent way to improve the intermittent discharge performance of Mg–air battery.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号