简介概要

基于PSO优化BP神经网络的露天矿边坡位移预测模型

来源期刊:有色金属(矿山部分)2020年第5期

论文作者:欧阳斌 陈艳红 邓传军

文章页码:37 - 41

关键词:露天矿;边坡位移预测;BP神经网络;粒子群算法;

摘    要:BP神经网络的初始连接权重和阈值对露天矿边坡位移预测的精度和收敛速度有重要影响。鉴于粒子群优化(PSO)算法具有全局搜索性能和收敛速度快,引入PSO算法对BP神经网络的初始连接权重和阈值进行全局优化,提出了基于PSO优化BP神经网络的露天矿边坡位移预测模型。将所提出的模型应用于实际案例中,并与BP神经网络进行对比。结果表明:该模型能够提高BP神经网络在露天矿边坡位移预测中的精度和收敛速度,预测结果的最大相对误差和平均相对误差分别是0.566 8%和0.353 0%,具有较好的精度和实际应用价值。

详情信息展示

基于PSO优化BP神经网络的露天矿边坡位移预测模型

欧阳斌,陈艳红,邓传军

江西工业工程职业技术学院能源工程学院

摘 要:BP神经网络的初始连接权重和阈值对露天矿边坡位移预测的精度和收敛速度有重要影响。鉴于粒子群优化(PSO)算法具有全局搜索性能和收敛速度快,引入PSO算法对BP神经网络的初始连接权重和阈值进行全局优化,提出了基于PSO优化BP神经网络的露天矿边坡位移预测模型。将所提出的模型应用于实际案例中,并与BP神经网络进行对比。结果表明:该模型能够提高BP神经网络在露天矿边坡位移预测中的精度和收敛速度,预测结果的最大相对误差和平均相对误差分别是0.566 8%和0.353 0%,具有较好的精度和实际应用价值。

关键词:露天矿;边坡位移预测;BP神经网络;粒子群算法;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号