Quantification of trace amounts of impurities in high purity cobalt by high resolution inductively coupled plasma mass spectrometry
来源期刊:Rare Metals2007年第3期
论文作者:XIE Hualin, ), HUANG Kelong), NIE Xidu), and TANG Yougen) ) School of Chemistry and Chemical Engineering, Central South University, Changsha , China ) Department of Chemistry, Hunan Institute of Technology, Hengyang , China
文章页码:286 - 291
摘 要:An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects because of the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the deter- mination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 μg?g?1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.
XIE Hualin1, 2), HUANG Kelong1), NIE Xidu2), and TANG Yougen1) 1) School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China 2) Department of Chemistry, Hunan Institute of Technology, Hengyang 421008, China
摘 要:An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects because of the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the deter- mination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 μg?g?1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.
关键词: