EFFECT OF STRUCTURAL PARAMETERS ON THE THERMAL STRESS OF A NiFe2O4-BASED CERMET INERT ANODE IN ALUMINUM ELECTROLYSIS
来源期刊:Acta Metallurgica Sinica2007年第2期
论文作者:Y.Y. Wu S.L. Ye J. Li Y. Q. Lai Z.G. Wang
Key words:inert anode; thermal stress; structural parameter; aluminum electrolysis;
Abstract: Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working condition of an inert anode. To reduce its thermal stress,the effect of some parameters on the thermal stress distribution was investigated, including the anode height, the anode radius, the hole depth, the hole radius, and the radius of inner chamfer and outer chamfer. The results showed that in the actual working condition of an inert anode, there existed a large axial tensile stress near the tangent interface between the anode and bath, which was the major cause of anode breaking. Increasing the anode height and reducing the hole depth properly seemed to be beneficial for the stress distribution. With the increase of anode radius, the stress distribution became better first and then deteriorated,the reasonable value was between 0.045 to 0.06m. The hole radius had a significant effect on the stress and a smaller radius would reduce the thermal stress. The effect of the radius of the inner chamfer and the outer chamfer was less than other parameters.
Y.Y. Wu1,S.L. Ye1,J. Li1,Y. Q. Lai1,Z.G. Wang1
(1.School of Metallurgy Science and Engineering, Central South University,Changsha 410083, China)
Abstract:Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working condition of an inert anode. To reduce its thermal stress,the effect of some parameters on the thermal stress distribution was investigated, including the anode height, the anode radius, the hole depth, the hole radius, and the radius of inner chamfer and outer chamfer. The results showed that in the actual working condition of an inert anode, there existed a large axial tensile stress near the tangent interface between the anode and bath, which was the major cause of anode breaking. Increasing the anode height and reducing the hole depth properly seemed to be beneficial for the stress distribution. With the increase of anode radius, the stress distribution became better first and then deteriorated,the reasonable value was between 0.045 to 0.06m. The hole radius had a significant effect on the stress and a smaller radius would reduce the thermal stress. The effect of the radius of the inner chamfer and the outer chamfer was less than other parameters.
Key words:inert anode; thermal stress; structural parameter; aluminum electrolysis;
【全文内容正在添加中】