简介概要

基于多智能体强化学习的新强化函数设计

来源期刊:控制工程2009年第2期

论文作者:左国玉 张红卫 韩光胜

文章页码:239 - 242

关键词:Keepaway;多智能体系统;强化学习;强化函数;Robocup;

摘    要:为了提高强化学习算法在多智能体系统中的性能表现,针对典型的多智能体系统-Keepaway平台总是以失败告终的特点,受与之有相同特点的单智能体系统杆平衡系统所采用强化函数的启发,重新设计一种新的惩罚式的强化函数。新的强化函数在系统成功状态时设零值奖赏,失败状态时给与负值惩罚。基于新设计的强化函数的Sarsa(λ)算法成功应用在Keepaway平台上。仿真结果表明,新设计的强化函数在一定参数条件下有效提高了强化学习算法载Keepaway平台的性能表现,其最终的学习效果更好。

详情信息展示

基于多智能体强化学习的新强化函数设计

左国玉,张红卫,韩光胜

摘 要:为了提高强化学习算法在多智能体系统中的性能表现,针对典型的多智能体系统-Keepaway平台总是以失败告终的特点,受与之有相同特点的单智能体系统杆平衡系统所采用强化函数的启发,重新设计一种新的惩罚式的强化函数。新的强化函数在系统成功状态时设零值奖赏,失败状态时给与负值惩罚。基于新设计的强化函数的Sarsa(λ)算法成功应用在Keepaway平台上。仿真结果表明,新设计的强化函数在一定参数条件下有效提高了强化学习算法载Keepaway平台的性能表现,其最终的学习效果更好。

关键词:Keepaway;多智能体系统;强化学习;强化函数;Robocup;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号