Anisotropic Porous Ti6Al4V Alloys Fabricated by Diffusion Bonding:Adaption of Compressive Behavior to Cortical Bone Implant Applications
来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2016年第9期
论文作者:Fuping Li Jinshan Li Hongchao Kou Lian Zhou
文章页码:937 - 943
摘 要:In this work, porous Ti6Al4V alloys with 30%–70% porosity for biomedical applications were fabricated by diffusion bonding of alloy meshes. Pore structure was characterized by Micro-CT and SEM. Compressive behavior in the out-of-plane direction and biocompatibility with cortical bone were studied. The results reveal that the fabricated porous Ti6Al4V alloys possess anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The average pore size of porous Ti6Al4V alloys with 30%–70% porosity is in the range of 240–360 μm. By tailoring diffusion bonding temperature, aspect ratio of alloy meshes and porosity, porous Ti6Al4V alloys with different compressive properties can be obtained, for instance, Young’s modulus and yield stress in the ranges of 4–40 GPa and70–500 MPa, respectively. Yield stress of porous Ti6Al4V alloys fabricated by diffusion bonding is close to that of alloys fabricated by rapid prototyping, but higher than that of fabricated by powder sintering and space-holder method. Diffusion bonding temperature has some effects on the yield stress of porous Ti6Al4V alloys, but has a minor effect on the Young’s modulus. The relationship between compressive properties and relative density conforms well to the Gibson–Ashby model. The Young’s modulus is linear with the aspect ratio, while the yield stress is linear with the square of aspect ratio of alloy meshes. Porous Ti6Al4V alloys with 60%–70% porosity have potential for cortical bone implant applications.
Fuping Li,Jinshan Li,Hongchao Kou,Lian Zhou
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
摘 要:In this work, porous Ti6Al4V alloys with 30%–70% porosity for biomedical applications were fabricated by diffusion bonding of alloy meshes. Pore structure was characterized by Micro-CT and SEM. Compressive behavior in the out-of-plane direction and biocompatibility with cortical bone were studied. The results reveal that the fabricated porous Ti6Al4V alloys possess anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The average pore size of porous Ti6Al4V alloys with 30%–70% porosity is in the range of 240–360 μm. By tailoring diffusion bonding temperature, aspect ratio of alloy meshes and porosity, porous Ti6Al4V alloys with different compressive properties can be obtained, for instance, Young’s modulus and yield stress in the ranges of 4–40 GPa and70–500 MPa, respectively. Yield stress of porous Ti6Al4V alloys fabricated by diffusion bonding is close to that of alloys fabricated by rapid prototyping, but higher than that of fabricated by powder sintering and space-holder method. Diffusion bonding temperature has some effects on the yield stress of porous Ti6Al4V alloys, but has a minor effect on the Young’s modulus. The relationship between compressive properties and relative density conforms well to the Gibson–Ashby model. The Young’s modulus is linear with the aspect ratio, while the yield stress is linear with the square of aspect ratio of alloy meshes. Porous Ti6Al4V alloys with 60%–70% porosity have potential for cortical bone implant applications.
关键词: