Effect of minor Sc and Zr on superplasticity of Al-Mg-Mn alloys
来源期刊:中国有色金属学报(英文版)2007年第4期
论文作者:彭勇宜 尹志民 聂波 钟利
文章页码:744 - 744
Key words:Sc; Zr; Al-Mg-Mn alloy; superplasticity; grain boundary sliding; activation energy
Abstract: The effect of Sc and Zr on the superplastic properties of Al-Mg-Mn alloy sheets was investigated by control experiment. The superplastic properties and the mechanism of superplastic deformation of the two alloys were studied by means of optical microscope, scanning electronic microscope and transmission electron microscope. The elongation to failure of Al-Mg-Mn-Sc-Zr alloy is larger than that of Al-Mg-Mn alloy at the same temperature and initial strain rate. The variation of strain rate sensitivity index is similar to that of elongation to failure. In addition, Al-Mg-Mn-Sc-Zr alloy exhibits higher strain rate superplastic property. The activation energies of the two alloys that are calculated by constitutive equation and linear regression method approach the energy of grain boundary diffusion. The addition of Sc and Zr decreases activation energy and improves the superplastic property of Al-Mg-Mn alloy. The addition of Sc and Zr refines the grain structure greatly. The main mechanism of superplastic deformation of the two alloys is grain boundary sliding accommodated by grain boundary diffusion. The fine grain structure and high density of grain boundary, benefit grain boundary sliding, and dynamic recrystallization brings new fine grain and high angle grain boundary which benefit grain boundary sliding too. Grain boundary diffusion, dislocation motion and dynamic recrystallization harmonize the grain boundary sliding during deformation.
基金信息:the National Basic Research Program of China