主成分分析和最小二乘支持向量机模型在铁水硫和硅含量预测中的应用
来源期刊:冶金分析2020年第2期
论文作者:赵宁 王玉英 杨凡 杨卫轩
文章页码:1 - 6
关键词:主成分分析(PCA);最小二乘支持向量机(LS-SVM);硫含量;硅含量;铁水;
摘 要:良好的铁水质量是铸铁性能可靠性和稳定性的保证,而铁水中硫(S)含量和硅(Si)含量是衡量铁水质量的主要指标,因此在出铁前精准获取铁水S含量和Si含量具有非常重要的意义。实验提出一种结合主成分分析(PCA)和最小二乘支持向量机(LS-SVM)模型的铁水S含量和Si含量的预测方法。将某钢厂大型高炉的在线采集数据作为研究对象,首先对影响铁水中S含量和Si含量变化因素的数据做主成分分析,求取主成分作为模型的输入变量,其次建立最小二乘支持向量机预测模型对铁水S含量和Si含量进行预测。在S含量预测过程中,正则化参数gam和核函数参数sig分别取20、700时,预测误差最小,其均方根误差为0.001 2,仿真时间为0.423 105s;Si含量预测过程中正则化参数gam和核函数参数sig分别取40、500时预测误差最小,均方根误差为0.023 8,仿真时间为0.079 522s。最后将实验结果与传统最小二乘支持向量机(LS-SVM)和结合PCA的BP神经网络预测模型(PCA+BP神经网络)的结果对比,后两组对比实验关于S含量预测的均方根误差分别为0.001 5和0.001 4,仿真时间分别为1.320 842s和2.245 967s;后两种对比实验关于Si含量预测的均方根误差分别为0.031 6和0.032 5,仿真时间分别为0.459 671s和2.061 576s。实验结果表明,实验方法更加全面地考虑了所有因素对铁水中S含量和Si含量变化的影响,具有训练时间短、预测精度高等优点。
赵宁,王玉英,杨凡,杨卫轩
西安建筑科技大学理学院
摘 要:良好的铁水质量是铸铁性能可靠性和稳定性的保证,而铁水中硫(S)含量和硅(Si)含量是衡量铁水质量的主要指标,因此在出铁前精准获取铁水S含量和Si含量具有非常重要的意义。实验提出一种结合主成分分析(PCA)和最小二乘支持向量机(LS-SVM)模型的铁水S含量和Si含量的预测方法。将某钢厂大型高炉的在线采集数据作为研究对象,首先对影响铁水中S含量和Si含量变化因素的数据做主成分分析,求取主成分作为模型的输入变量,其次建立最小二乘支持向量机预测模型对铁水S含量和Si含量进行预测。在S含量预测过程中,正则化参数gam和核函数参数sig分别取20、700时,预测误差最小,其均方根误差为0.001 2,仿真时间为0.423 105s;Si含量预测过程中正则化参数gam和核函数参数sig分别取40、500时预测误差最小,均方根误差为0.023 8,仿真时间为0.079 522s。最后将实验结果与传统最小二乘支持向量机(LS-SVM)和结合PCA的BP神经网络预测模型(PCA+BP神经网络)的结果对比,后两组对比实验关于S含量预测的均方根误差分别为0.001 5和0.001 4,仿真时间分别为1.320 842s和2.245 967s;后两种对比实验关于Si含量预测的均方根误差分别为0.031 6和0.032 5,仿真时间分别为0.459 671s和2.061 576s。实验结果表明,实验方法更加全面地考虑了所有因素对铁水中S含量和Si含量变化的影响,具有训练时间短、预测精度高等优点。
关键词:主成分分析(PCA);最小二乘支持向量机(LS-SVM);硫含量;硅含量;铁水;