简介概要

Flux blended synthesis of novel Y2O3:Eu3+ sensing arrays for highly sensitive dual mode detection of LFPs on versatile surfaces

来源期刊:Journal of Rare Earths2018年第9期

论文作者:K.N.Venkatachalaiah

文章页码:954 - 964

摘    要:In the present communication,various fluxes blended Y2 O3:Eu3+(5 mol%) nanopowders(NPs) were successfully fabricated by solution combustion method.PXRD pattern confirms body-centered cubic structure of the prepared samples.Energy band gap(Eg) of the fabricated products was estimated and is found to be in the range of 3.13-3.32 eV.Photoluminescence(PL) emission spectra exhibit sharp and intense peaks at ~579,592,614,657,704 nm corresponding to 5 D07 FJ(J = 0,1,2,3 and 4) transitions of Eu3+ ions.Significance of fluxes for enhancing the PL emissions was extensively studied.Photometric studies of the prepared samples are located in pure red region.Optimized NPs were explored as a novel sensing agent for visualization of latent fingerprints(LFPs) on various surfaces including porous,semiporous and non-porous surfaces followed by powder dusting technique.Various experiments including aging,temperature,scratching and aquatic fresh water treatment tests were performed to evaluate applicability of the fabricated NPs.Visualized LFPs exhibit well defined ridge details including most authenticated sweat pores are also revealed with high sensitivity,selectivity,little background hindrance and less toxicity.Aforementioned results evidence that the method and fabricated NPs can be considered to be simple,rapid and economical and provide novel sensing platform for LFPs visualization in prospective forensic applications.

详情信息展示

Flux blended synthesis of novel Y2O3:Eu3+ sensing arrays for highly sensitive dual mode detection of LFPs on versatile surfaces

K.N.Venkatachalaiah1,2

2. Research and Development Center,Bharathiar University

摘 要:In the present communication,various fluxes blended Y2 O3:Eu3+(5 mol%) nanopowders(NPs) were successfully fabricated by solution combustion method.PXRD pattern confirms body-centered cubic structure of the prepared samples.Energy band gap(Eg) of the fabricated products was estimated and is found to be in the range of 3.13-3.32 eV.Photoluminescence(PL) emission spectra exhibit sharp and intense peaks at ~579,592,614,657,704 nm corresponding to 5 D07 FJ(J = 0,1,2,3 and 4) transitions of Eu3+ ions.Significance of fluxes for enhancing the PL emissions was extensively studied.Photometric studies of the prepared samples are located in pure red region.Optimized NPs were explored as a novel sensing agent for visualization of latent fingerprints(LFPs) on various surfaces including porous,semiporous and non-porous surfaces followed by powder dusting technique.Various experiments including aging,temperature,scratching and aquatic fresh water treatment tests were performed to evaluate applicability of the fabricated NPs.Visualized LFPs exhibit well defined ridge details including most authenticated sweat pores are also revealed with high sensitivity,selectivity,little background hindrance and less toxicity.Aforementioned results evidence that the method and fabricated NPs can be considered to be simple,rapid and economical and provide novel sensing platform for LFPs visualization in prospective forensic applications.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号