简介概要

一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法

来源期刊:桂林理工大学学报2020年第1期

论文作者:何艳萍 陈天伟 郑旭东 沈宇臻

文章页码:143 - 149

关键词:高光谱图像分类;超限稀疏多项逻辑回归;极限学习机;奇异谱分析;

摘    要:由于高光谱图像存在大量噪声,超限稀疏多项逻辑回归无法分析高光谱图像的内在结构,其适用性有待进一步提高,为解决超限稀疏多项逻辑回归不能有效应对噪声的问题,提出了一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法:首先对高光谱遥感影像数据集进行归一化处理以消除数据量纲的影响,随后利用奇异谱分析对影像进行有效信息提取及噪声剔除,最后通过超限稀疏多项式逻辑回归对处理过的数据实现分类。采用多种不同数量的训练样本进行实验,并与3种常用分类算法进行对比分析,评价了本文方法的有效性和鲁棒性。结果显示,本文方法在各类训练样本情况下相比于其他分类方法,其总体分类精度皆有一定程度的提升。

详情信息展示

一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法

何艳萍,陈天伟,郑旭东,沈宇臻

摘 要:由于高光谱图像存在大量噪声,超限稀疏多项逻辑回归无法分析高光谱图像的内在结构,其适用性有待进一步提高,为解决超限稀疏多项逻辑回归不能有效应对噪声的问题,提出了一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法:首先对高光谱遥感影像数据集进行归一化处理以消除数据量纲的影响,随后利用奇异谱分析对影像进行有效信息提取及噪声剔除,最后通过超限稀疏多项式逻辑回归对处理过的数据实现分类。采用多种不同数量的训练样本进行实验,并与3种常用分类算法进行对比分析,评价了本文方法的有效性和鲁棒性。结果显示,本文方法在各类训练样本情况下相比于其他分类方法,其总体分类精度皆有一定程度的提升。

关键词:高光谱图像分类;超限稀疏多项逻辑回归;极限学习机;奇异谱分析;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号