四轮独立驱动电动汽车行驶状态级联估计

来源期刊:中南大学学报(自然科学版)2019年第1期

论文作者:陈龙 陈特 蔡英凤 徐兴 江浩斌

文章页码:241 - 250

关键词:电动汽车;四轮独立驱动;纵向力估计;车辆状态;高阶滑模观测器

Key words:electric vehicle; four-wheel independent drive; longitudinal force estimation; vehicle state; high order sliding mode observer

摘    要:建立三自由度车辆模型与轮胎模型,提出电驱动轮模型并将其应用到纵向力估计中,基于自适应高阶滑模观测器实现轮胎纵向力的估计,利用纵向力观测器(longitudinal force observer, LFO)输出值作为已知输入,结合信息融合滤波(information fusion filter, IFF)算法提出一种车辆状态级联估计方法。进行仿真实验、台架实验以及实车道路实验。研究结果表明:设计的纵向力观测器具有较高的纵向力估计精度,基于信息融合滤波的车辆状态估计方法能够实时跟踪车辆状态且估计性能优于扩展卡尔曼滤波(extended Kalman filter, EKF)。

Abstract: The vehicle model with 3 degree of freedom and the tire model were established. An electric drive wheel model was presented and applied to the longitudinal force estimation. The estimation of tire longitudinal force was realized based on the adaptive high order sliding mode observer. Using the output values of longitudinal force observer as the known input and combining the information fusion filter algorithm, a vehicle state joint estimation method was proposed. The simulation, bench test and road test were carried out. The results show that the designed longitudinal force observer has high estimation accuracy, and the information fusion filter-based vehicle state estimation method can track the vehicle state in real time and has better estimation performance than extended Kalman filter.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号