Synthesis and luminescence properties of SrAl2O4:Eu2+,Dy3+ hollow microspheres via a solvothermal co-precipitation method
来源期刊:Journal of Rare Earths2013年第3期
论文作者:薛志萍 邓苏青 刘应亮 雷炳富 肖勇 郑明涛
文章页码:241 - 246
摘 要:SrAl2O4:Eu2+,Dy3+ hollow microspheres were successfully prepared through a facile and mild solvothermal co-precipitation combining with a postcalcining process.The structure and particle morphology were investigated by X-ray diffraction(XRD),scanning and transmission electron microscopy(SEM and TEM)pictures,respectively.The mechanism for the formation of spherical SrAl2O4:Eu2+,Dy3+ phosphor was preliminary presented.After being irradiated with ultraviolet(UV)light,the spherical phosphor emitted long-lasting green phosphorescence.Both the photoluminescence(PL)spectra and luminance decay,compared with that of commercial bulky powders,revealed that the phosphors had efficient luminescent and long lasting properties.It was considered that the SrAl2O4:Eu2+,Dy3+ hollow microspheres had promising long-lasting phosphorescence with potential scale-dependent applications in photonic devices.
薛志萍1,邓苏青1,刘应亮2,雷炳富2,肖勇2,郑明涛2
1. Department of Chemistry,Jinan University2. College of Science,South China Agricultural University
摘 要:SrAl2O4:Eu2+,Dy3+ hollow microspheres were successfully prepared through a facile and mild solvothermal co-precipitation combining with a postcalcining process.The structure and particle morphology were investigated by X-ray diffraction(XRD),scanning and transmission electron microscopy(SEM and TEM)pictures,respectively.The mechanism for the formation of spherical SrAl2O4:Eu2+,Dy3+ phosphor was preliminary presented.After being irradiated with ultraviolet(UV)light,the spherical phosphor emitted long-lasting green phosphorescence.Both the photoluminescence(PL)spectra and luminance decay,compared with that of commercial bulky powders,revealed that the phosphors had efficient luminescent and long lasting properties.It was considered that the SrAl2O4:Eu2+,Dy3+ hollow microspheres had promising long-lasting phosphorescence with potential scale-dependent applications in photonic devices.
关键词: