Swelling properties and molecular simulation of PNIPA porous hydrogels
来源期刊:中南大学学报(英文版)2013年第5期
论文作者:李智慧 LIU Wen-tao(刘文涛) LI Zhong-yuan(李中原) DUAN Xiang-yuan(段翔远) GAO Xu-jing(高旭静) LI Yun-cai(李蕴才)3
文章页码:1161 - 1172
Key words:poly(N-isopropyl acrylamide); radiation; swelling properties; molecular simulation
Abstract: A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology of hydrogels were examined by the infrared radiation and the scanning electron microscopy, respectively. The influences of the content of crosslinking agent and relative molecular mass of polyethylene glycol (PEG) on the swelling properties of hydrogels were discussed. The molecular mechanics simulations were performed to investigate the phase transformation mechanism of poly(N-isopropyl acrylamide) (PNIPA) hydrogel. The results show that macropores are observed in hydrogels, whereas hydrogels prepared without using PEG have a dense surface. LCST of hydrogels increases with the increase of relative molecular mass of PEG. The swelling mechanism of PNIPA porous hydrogels follows non-Fickian diffusion model. The theoretical maximum water absorption S∞ is approximately consistent with experimental value?? according to the second-order kinetics model established by Schott. The molecule chains of PNIPA hydrogel begin folding and curling, resulting in volume shrinkage at 305 K. There are much intramolecular nonbonding interactions in molecule chains of hydrogels. The porous hydrogels are expected to be applied in the field of artificial intelligence material.
LI Zhi-hui(李智慧)1, LIU Wen-tao(刘文涛)1, LI Zhong-yuan(李中原)2, DUAN Xiang-yuan(段翔远)1, GAO Xu-jing(高旭静)1, LI Yun-cai(李蕴才)3
(1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China;
2. Shenzhen Academy of Metrology & Quality Inspection, Shenzhen 518131, China;
3. Key Labor)
Abstract:A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology of hydrogels were examined by the infrared radiation and the scanning electron microscopy, respectively. The influences of the content of crosslinking agent and relative molecular mass of polyethylene glycol (PEG) on the swelling properties of hydrogels were discussed. The molecular mechanics simulations were performed to investigate the phase transformation mechanism of poly(N-isopropyl acrylamide) (PNIPA) hydrogel. The results show that macropores are observed in hydrogels, whereas hydrogels prepared without using PEG have a dense surface. LCST of hydrogels increases with the increase of relative molecular mass of PEG. The swelling mechanism of PNIPA porous hydrogels follows non-Fickian diffusion model. The theoretical maximum water absorption S∞ is approximately consistent with experimental value?? according to the second-order kinetics model established by Schott. The molecule chains of PNIPA hydrogel begin folding and curling, resulting in volume shrinkage at 305 K. There are much intramolecular nonbonding interactions in molecule chains of hydrogels. The porous hydrogels are expected to be applied in the field of artificial intelligence material.
Key words:poly(N-isopropyl acrylamide); radiation; swelling properties; molecular simulation