基于PSO-GRNN神经网络的煤矿井下定位算法研究
来源期刊:中国矿业2020年第2期
论文作者:黄智勇 崔丽珍 赫佳星
文章页码:88 - 93
关键词:煤矿;井下定位;广义回归神经网络;粒子群优化算法;
摘 要:为进一步提高井下定位精度,本文提出一种基于粒子群算法-广义回归神经网络(PSO-GRNN)的煤矿井下定位算法。该算法利用广义回归神经网络(GRNN)建立井下定位模型,通过粒子群优化算法(PSO)寻找广义回归神经网络最优的平滑因子,降低人为调整的影响,提高定位精度。将信标节点接收到的信号强度(RSSI)值输入训练好的神经网络,神经网络的输出就是待测节点的坐标。仿真实验表明,PSOGRNN模型相比未经优化的GRNN模型和BP模型,定位精度更高;相比BP模型,算法复杂度更低,效率更高,满足井下自适应定位要求。
史明泉,崔丽珍,赫佳星
内蒙古科技大学信息工程学院
摘 要:为进一步提高井下定位精度,本文提出一种基于粒子群算法-广义回归神经网络(PSO-GRNN)的煤矿井下定位算法。该算法利用广义回归神经网络(GRNN)建立井下定位模型,通过粒子群优化算法(PSO)寻找广义回归神经网络最优的平滑因子,降低人为调整的影响,提高定位精度。将信标节点接收到的信号强度(RSSI)值输入训练好的神经网络,神经网络的输出就是待测节点的坐标。仿真实验表明,PSOGRNN模型相比未经优化的GRNN模型和BP模型,定位精度更高;相比BP模型,算法复杂度更低,效率更高,满足井下自适应定位要求。
关键词:煤矿;井下定位;广义回归神经网络;粒子群优化算法;