简介概要

Passive control of along-wind response of tall building

来源期刊:中南大学学报(英文版)2014年第10期

论文作者:KIM Young-moon YOU Ki-pyo YOU Jang-youl

文章页码:4002 - 4006

Key words:tuned mass damper (TMD); along-wind vibration; tall building

Abstract: Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper (TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper (ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.

详情信息展示

Passive control of along-wind response of tall building

KIM Young-moon1, 2, YOU Ki-pyo1, 2, YOU Jang-youl3

(1. Department of Architecture Engineering, Chonbuk National University, Chonju 561-756, Korea;
2. Long-Span Steel Frame System Research Center, Chonbuk National University, Chonju 561-756, Korea;
3. KOCED Wind Tunnel Center, Chonbuk National University, Chonju 561-756, Korea)

Abstract:Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper (TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper (ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.

Key words:tuned mass damper (TMD); along-wind vibration; tall building

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号