简介概要

Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第17期

论文作者:Xiaoming Qian Nick Parson X.-Grant Chen

文章页码:189 - 197

摘    要:The microstructural evolutions under as-homogenized and as-deformed conditions and after the postdeformation annealing of AA6082 aluminum alloys with different Mn content(0.05 wt.%-1 wt.%) were studied by optical, scanning electron, and transmission electron microscopies. The results showed that the presence of a large amount of α-Al(Mn,Fe)Si dispersoids induced by Mn addition significantly improved the recrystallization resistance. In the base alloy free of Mn, static recrystallization occurred after 2 h of annealing, and grain growth commenced after 4 h of annealing, whereas in Mn-containing alloys, the recovered grain structure was well-retained after even 8 h of annealing. The alloy with 0.5% Mn exhibited the best recrystallization resistance, and a further increase of the Mn levels to 1% resulted in a gradual reduction of the recrystallization resistance, the reason for which was that recrystallization occurred only in the dispersoid-free zones(DFZs) and the increased DFZ fraction with Mn content led to an increase in the recrystallization fraction. The variation in the dispersoid number density and a coarsening of dispersoids during annealing have a limited influence on the static recrystallization in Mn-containing alloys.

详情信息展示

Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing

Xiaoming Qian1,Nick Parson2,X.-Grant Chen1

1. Department of Applied Science, University of Quebec at Chicoutimi2. Arvida Research and Development Centre, Rio Tinto Aluminum

摘 要:The microstructural evolutions under as-homogenized and as-deformed conditions and after the postdeformation annealing of AA6082 aluminum alloys with different Mn content(0.05 wt.%-1 wt.%) were studied by optical, scanning electron, and transmission electron microscopies. The results showed that the presence of a large amount of α-Al(Mn,Fe)Si dispersoids induced by Mn addition significantly improved the recrystallization resistance. In the base alloy free of Mn, static recrystallization occurred after 2 h of annealing, and grain growth commenced after 4 h of annealing, whereas in Mn-containing alloys, the recovered grain structure was well-retained after even 8 h of annealing. The alloy with 0.5% Mn exhibited the best recrystallization resistance, and a further increase of the Mn levels to 1% resulted in a gradual reduction of the recrystallization resistance, the reason for which was that recrystallization occurred only in the dispersoid-free zones(DFZs) and the increased DFZ fraction with Mn content led to an increase in the recrystallization fraction. The variation in the dispersoid number density and a coarsening of dispersoids during annealing have a limited influence on the static recrystallization in Mn-containing alloys.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号