简介概要

Coating thickness control in continuously fabricating metallic glass-coated composite wires

来源期刊:International Journal of Minerals Metallurgy and Materials2013年第5期

论文作者:Bao-yu Zhang Xiao-hua Chen Zhao-ping Lu Xi-dong Hui

文章页码:456 - 461

摘    要:A continuous production process was developed for coating bulk metallic glasses on the metallic wire surface. The effects of processing parameters, including the drawing velocity and coating temperature, on the coating thickness were investigated. It is found that the coating thickness increases with the increase in drawing velocity but decreases with the increase in coating temperature. A fluid mechanical model was developed to quantify the coating thickness under various processing conditions. By using this theoretical model, the coating thickness was calculated, and the calculated values are in good agreement with the experimental data.

详情信息展示

Coating thickness control in continuously fabricating metallic glass-coated composite wires

Bao-yu Zhang,Xiao-hua Chen,Zhao-ping Lu,Xi-dong Hui

State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing

摘 要:A continuous production process was developed for coating bulk metallic glasses on the metallic wire surface. The effects of processing parameters, including the drawing velocity and coating temperature, on the coating thickness were investigated. It is found that the coating thickness increases with the increase in drawing velocity but decreases with the increase in coating temperature. A fluid mechanical model was developed to quantify the coating thickness under various processing conditions. By using this theoretical model, the coating thickness was calculated, and the calculated values are in good agreement with the experimental data.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号