Simulation and analysis of humid air turbine cycle based on aeroderivative three-shaft gas turbine

来源期刊:中南大学学报(英文版)2018年第3期

论文作者:张会生 黄地 陈金伟 周登极 苏明

文章页码:662 - 670

Key words:humid air turbine; aeroderivative gas turbine; saturator; simulation

Abstract: Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low, the conventional combined cycle is not suitable for three-shaft gas turbines. However, the humid air turbine (HAT) cycle provides a new choice for aeroderivative gas turbine because the humidification process does not require high temperature. Existing HAT cycle plants are all based on single-shaft gas turbines due to their simple structures, therefore converting aeroderivative three-shaft gas turbine into HAT cycle still lacks sufficient research. This paper proposes a HAT cycle model on a basis of an aeroderivative three-shaft gas turbine. Detailed HAT cycle modelling of saturator, gas turbine and heat exchanger are carried out based on the modular modeling method. The models are verified by simulations on the aeroderivative three-shaft gas turbine. Simulation results show that the studied gas turbine with original size and characteristics could not reach the original turbine inlet temperature because of the introduction of water. However, the efficiency still increases by 0.16% when the HAT cycle runs at the designed power of the simple cycle. Furthermore, simulations considering turbine modifications show that the efficiency could be significantly improved. The results obtained in the paper can provide reference for design and analysis of HAT cycle based on multi-shaft gas turbine especially the aeroderivative gas turbine.

Cite this article as: HUANG Di, CHEN Jin-wei, ZHOU Deng-ji, ZHANG Hui-sheng, SU Ming. Simulation and analysis of humid air turbine cycle based on aeroderivative three-shaft gas turbine [J]. Journal of Central South University, 2018, 25(3): 662–670. DOI: https://doi.org/10.1007/s11771-018-3769-9.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号