高能球磨制备纳米WC-MgO粉末的反应模式及判据

来源期刊:中国有色金属学报2009年第3期

论文作者:吴彩霞 朱世根 马俊 张梅琳

文章页码:411 - 417

关键词:WC-MgO;纳米复合粉末;高能球磨;反应模式, WC-MgO; nanocomposite powders; high-energy ball milling; reaction mode

Key words:WC-MgO; nanocomposite powders; high-energy ball milling; reaction mode

摘    要:以WO3、Mg和石墨粉为原材料,通过XRD、SEM 和TEM对粉末的结构特征进行表征。结合Magini模型和杨君友模型界定扩散反应和自蔓延反应两种高能球磨合成WC-MgO反应模式的能量区域,并通过球磨能量图阐明球磨速度、球料比和球磨时间等工艺参数对不同反应模式的影响。结果表明:在一定球磨条件下,当有效强度因子大于38.24 kJ/(g·s)时,合成WC-MgO的反应模式为自蔓延反应,所需的球磨总能量介于21.51×109 J/g和61.82×109 J/g之间;当有效强度因子为22.12~38.24 kJ/(g·s)时,合成WC-MgO的反应模式为扩散反应,所需的最小球磨总能量为112.83×109 J/g。

Abstract: The synthesis of nanocomposite WC-MgO powders was investigated by high-energy ball milling of the mixture powders WO3, graphite and Mg at the mole ratio of 1:1:3. The energy region of diffusion and self-propagation reaction (SHS) was defined using a refined model based on Magini model and YANG Jun-you model. The effects of milling parameters conditions (including milling speed, ball to powder mass ratio and milling time) on the reaction mode were illuminated by the obtained milling energy map. The results show that the formation mechanism of WC-MgO is SHS when the effective extensive factor is above 38.24 kJ/(g·s), and it can be diffusion providing that effective extensive factor is 22.12-38.24 kJ/(g·s). As the energy map demonstration, the total energy for fabricating WC-MgO required for SHS is 21.51×109-61.82×109 J/g, while more than 112.83×109 J/g is necessary for diffusion mode.

基金信息:上海市纳米科技专项基金资助项目

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号