简介概要

Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第12期

论文作者:Kalaimani Markandan Ruijing Lim Pawan Kumar Kanaujia Ian Seetoh Muhammad Raziq bin Mohd Rosdi Zhi Huey Tey Jun Seng Goh Yee Cheong Lam Changquan Lai

文章页码:243 - 252

摘    要:The feasibility of using selective heat melting(SHM) to fabricate composite materials and functionally graded structures was investigated.We report,for the first time,the successful 3 D printing of copper(Cu)-polyethylene(PE) composite,iron(Fe)-polyethylene(PE) composite and functionally graded CuO foams using the SHM technique.It was found that a low feed rate,high airflow rate and high airflow temperature were required for efficient delivery of heat from the emitted hot air to the powder bed,so that the PE binder particles can melt and form dense composites with smooth surfaces.The best mechanical properties were exhibited by composites with 80 vol.% PE,as lower PE concentrations led to deficient binding of the metal particles,while higher PE concentrations meant that very few metal particles were available to strengthen the composite.The strength exhibited by Cu-PE composites was comparable to engineering plastics such as polycarbonate,with the added advantage of being electrically conductive.The average conductivity of the samples,0.152±0.28 S/m,was on par with physically crosslinked graphene assemblies.By subjecting a Cu-PE composite,with Cu concentration graded from 10 vol.% to 30 vol.%,to a high temperature debinding and sintering treatment in air,CuO foam with graded porosity can be obtained.This CuO foam was observed to fail in a layer-by-layer manner under mechanical compression,which is a characteristic of functionally graded materials.Our study shows that,compared to existing 3 D printing techniques,SHM can be cheaper,have wider material compatibility,occupy a smaller footprint and potentially induce less residual stresses in the fabricated parts.Therefore,it could be a valuable complement to current additive manufacturing techniques for fabricating mechanically strong composite materials and functionally graded structures.

详情信息展示

Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique

Kalaimani Markandan1,Ruijing Lim2,Pawan Kumar Kanaujia1,Ian Seetoh1,Muhammad Raziq bin Mohd Rosdi3,Zhi Huey Tey4,Jun Seng Goh3,Yee Cheong Lam3,Changquan Lai1

1. Temasek Laboratories, Nanyang Technological University2. School of Physical & Mathematical Sciences, Nanyang Technological University3. School of Mechanical & Aerospace Engineering, Nanyang Technological University4. School of Materials Science & Engineering, Nanyang Technological University

摘 要:The feasibility of using selective heat melting(SHM) to fabricate composite materials and functionally graded structures was investigated.We report,for the first time,the successful 3 D printing of copper(Cu)-polyethylene(PE) composite,iron(Fe)-polyethylene(PE) composite and functionally graded CuO foams using the SHM technique.It was found that a low feed rate,high airflow rate and high airflow temperature were required for efficient delivery of heat from the emitted hot air to the powder bed,so that the PE binder particles can melt and form dense composites with smooth surfaces.The best mechanical properties were exhibited by composites with 80 vol.% PE,as lower PE concentrations led to deficient binding of the metal particles,while higher PE concentrations meant that very few metal particles were available to strengthen the composite.The strength exhibited by Cu-PE composites was comparable to engineering plastics such as polycarbonate,with the added advantage of being electrically conductive.The average conductivity of the samples,0.152±0.28 S/m,was on par with physically crosslinked graphene assemblies.By subjecting a Cu-PE composite,with Cu concentration graded from 10 vol.% to 30 vol.%,to a high temperature debinding and sintering treatment in air,CuO foam with graded porosity can be obtained.This CuO foam was observed to fail in a layer-by-layer manner under mechanical compression,which is a characteristic of functionally graded materials.Our study shows that,compared to existing 3 D printing techniques,SHM can be cheaper,have wider material compatibility,occupy a smaller footprint and potentially induce less residual stresses in the fabricated parts.Therefore,it could be a valuable complement to current additive manufacturing techniques for fabricating mechanically strong composite materials and functionally graded structures.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号