Effect of Reactive Nanoclays on Performances of PMMA/Reactive Nanoclay Nanocomposites
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2016年第6期
论文作者:陈世伟 卢旭晨 WANG Tizhuang PAN Feng ZHANG Zhimin
文章页码:1193 - 1200
摘 要:PMMA/reactive nanoclay nanocomposites were prepared by emulsion polymerization using two different reactive nanoclays. X-ray diffraction(XRD) and thermogravimetric analysis(TGA) results confirmed that the reactive nanoclays, kaolinite and montmorillonite, were obtained by the silylation reaction and the double bonds were grafted onto the edges and surfaces of the nanoclays. The presence of reactive nanoclays could increase the average molecular weights, the glass transition temperatures(Tg) and improve the thermal properties of nanocomposite. The tensile properties, Young’s modulus, and the aging properties of the nanocomposite films were also enhanced while the light transmittance decreased. Furthermore, the nanocomposites with the reactive kaolinite presented better performances than that with the reactive montmorillonite. Finally, the action mechanism of the reactive nanoclays to the performances of PMMA/reactive nanoclay nanocomposites was proposed.
陈世伟1,2,卢旭晨1,3,WANG Tizhuang1,PAN Feng1,ZHANG Zhimin1
1. State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences (CAS)2. University of Chinese Academy of Sciences
摘 要:PMMA/reactive nanoclay nanocomposites were prepared by emulsion polymerization using two different reactive nanoclays. X-ray diffraction(XRD) and thermogravimetric analysis(TGA) results confirmed that the reactive nanoclays, kaolinite and montmorillonite, were obtained by the silylation reaction and the double bonds were grafted onto the edges and surfaces of the nanoclays. The presence of reactive nanoclays could increase the average molecular weights, the glass transition temperatures(Tg) and improve the thermal properties of nanocomposite. The tensile properties, Young’s modulus, and the aging properties of the nanocomposite films were also enhanced while the light transmittance decreased. Furthermore, the nanocomposites with the reactive kaolinite presented better performances than that with the reactive montmorillonite. Finally, the action mechanism of the reactive nanoclays to the performances of PMMA/reactive nanoclay nanocomposites was proposed.
关键词: