简介概要

MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Locating Malleable Bulk Metallic Glasses in Zr-Ti-Cu-Al Alloys with Calorimetric Glass Transition Temperature as an Indicator

Qiang He and Jian Xu Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

摘 要:We defined the plastic deformability under constrained loading conditions as malleability for bulk metallic glass (BMG) materials. Quaternary Zr-Ti-Cu-Al alloys in the Zr-rich composition range are selected to investigate the compositional dependence of malleability assessed by bending testing and glass transition temperature (Tg ). As indicated, increasing the Al or Cu concentration in the alloys leads to the rise of T g . The Zr(61)Ti2Cu(25)Al(12) (ZT1) and Zr(61.6)Ti(4.4)Cu(24)Al(10) (ZT3) alloys exhibit an optimal combination of lower T g and higher glass-forming ability. The malleable BMGs such as ZT1 manifests two characters during deformation, the stable propagation of a single shear band indicated by large shear offsets and easy proliferation of shear bands. With increasing the T g of BMG, the yield strength σy,Young’s modulus and shear modulus simultaneously increase as well, while the Poisson s ratio decreases. The σy of ZT1 BMG is about 1680 MPa in compression and 1600 MPa in tension. In tensile loading, no any visible plasticity appears even when the strain rate increases up to the order of magnitude of 10(-1)s(-1). In consistent with the T g , malleability of Zr-Ti-Cu-Al BMGs manifests significant compositional dependence. The malleable BMG is associated with lower Tg , as well as lower shear modulus or higher Poisson s ratio, which can be understood on the basis of the correlation of Tg with shear energy barrier in metallic glass. Thus, the calorimetric Tg can be used as an indicator to screen malleable BMG-forming composition, with advantage of experimental accessibility.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号