Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys
来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第9期
论文作者:Fangfang Sun Guiru Liu Nash Qunying Li Enzuo Liu Chunnain He Chunsheng Shi Naiqin Zhao
文章页码:1015 - 1022
摘 要:The effects of adding the alloy element Sc to Al alloys on strengthening, recrystallization and modification of the grain microstructure have been investigated. The combination of Sc and Zr alloying not only produces a remarkable synergistic effect of inhibition of recrystallization and refinement of grain size but also substantially reduce the amount of high-cost additional Sc. In this work, the microstructures and corrosion behavior of a new type of Al-Cu-Mg-Sc-Zr alloy with Sc/Zr ratio of 1/2 were investigated.The experimental results showed that the Sc and Zr additions to Al-Cu-Mg alloy could strongly inhibit recrystallization, refine grain size, impede the segregation of Cu element along the grain boundary and increase the spacing of grain boundary precipitates. In addition, adding Sc and Zr to Al-Cu-Mg alloy effectively restricts the corrosion mechanism conversion associated with Al2 Cu Mg particles, which resulted in the change of the cross-section morphology of inter-granular corrosion from an undercutting to an elliptical shape. The susceptibility to inter-granular corrosion was significantly decreased with increasing Sc and Zr additions to the Al-Cu-Mg alloy. The relationships between microstructures evolution and inter-granular corrosion mechanism of Al-Cu-Mg-Sc-Zr alloys were also discussed.
Fangfang Sun1,Guiru Liu Nash2,Qunying Li1,Enzuo Liu1,3,Chunnain He1,3,Chunsheng Shi1,3,Naiqin Zhao1,3
1. School of Materials Science and Engineering,Tianjin University2. Department of Mechanical,Materials and Aerospace Engineering,Illinois Institute of Technology3. Tianjin Key Laboratory of Composite and Functional Materials
摘 要:The effects of adding the alloy element Sc to Al alloys on strengthening, recrystallization and modification of the grain microstructure have been investigated. The combination of Sc and Zr alloying not only produces a remarkable synergistic effect of inhibition of recrystallization and refinement of grain size but also substantially reduce the amount of high-cost additional Sc. In this work, the microstructures and corrosion behavior of a new type of Al-Cu-Mg-Sc-Zr alloy with Sc/Zr ratio of 1/2 were investigated.The experimental results showed that the Sc and Zr additions to Al-Cu-Mg alloy could strongly inhibit recrystallization, refine grain size, impede the segregation of Cu element along the grain boundary and increase the spacing of grain boundary precipitates. In addition, adding Sc and Zr to Al-Cu-Mg alloy effectively restricts the corrosion mechanism conversion associated with Al2 Cu Mg particles, which resulted in the change of the cross-section morphology of inter-granular corrosion from an undercutting to an elliptical shape. The susceptibility to inter-granular corrosion was significantly decreased with increasing Sc and Zr additions to the Al-Cu-Mg alloy. The relationships between microstructures evolution and inter-granular corrosion mechanism of Al-Cu-Mg-Sc-Zr alloys were also discussed.
关键词: