简介概要

Optical Properties of Au Nanoparticles Coated on Surface of Glass or Anodic Aluminum Oxide Template

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2012年第5期

论文作者:冯晋阳 赵修建

文章页码:897 - 901

摘    要:Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process. FE-SEM, UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass, while deposition occurs on the surface of regular hollows for anodic aluminum oxide template. A sharp absorption peak appears at the wavelength of 536 nm for sample B, while there is a red shift, with a broader peak for sample A. A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A, but no noticeable fluorescence emission has been found for Sample B. The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

详情信息展示

Optical Properties of Au Nanoparticles Coated on Surface of Glass or Anodic Aluminum Oxide Template

冯晋阳,赵修建

State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology)

摘 要:Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process. FE-SEM, UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass, while deposition occurs on the surface of regular hollows for anodic aluminum oxide template. A sharp absorption peak appears at the wavelength of 536 nm for sample B, while there is a red shift, with a broader peak for sample A. A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A, but no noticeable fluorescence emission has been found for Sample B. The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号