NMR Study on Structural Characteristics of Rare Earth Doped Boro-Alumino-Silicate Glasses
来源期刊:JOURNAL OF RARE EARTHS2006年第4期
论文作者:Zhang Qitu Ni Yaru Lu Chunhua Xu Zhongzi
Key words:glass forming; glass structure; magic angle spin nuclear magnetic resonance; boro-alumino-silicate glass; rare earths;
Abstract: The structural characteristics of Re2O3 doped B2O3-Al2O3-SiO2 glasses and factors such as the component and heat-treating conditions affecting the glass structure were investigated by magic angle spin nuclear magnetic resonance(MAS NMR) spectroscopy and differential thermal analysis (DTA). It is found that, in B2O3-Al2O3-SiO2 glass, the boron coordination sites are mainly of trigonal (B(3)) and tetrahedral (B(4)), and the aluminum coordination sites are Al(4), Al(5) and partly of Al(6). With the increase of BaO content in the B2O3-Al2O3-SiO2 glass, B(3) gradually changes to B(4), and Al(5), Al(6) changes to Al(4). On the other hand, compared with Ba2+, RE3+ can accumulate the boron network because of its higher field strength, which results in a large network structure. With the increase of samarium oxide, the silicate coordination Q4 (3T) will have predominance gradually. Heat-treatment has little effect on the boron and aluminum coordination sites in the glass structure.
Zhang Qitu1,Ni Yaru1,Lu Chunhua1,Xu Zhongzi1
(1.College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, China)
Abstract:The structural characteristics of Re2O3 doped B2O3-Al2O3-SiO2 glasses and factors such as the component and heat-treating conditions affecting the glass structure were investigated by magic angle spin nuclear magnetic resonance(MAS NMR) spectroscopy and differential thermal analysis (DTA). It is found that, in B2O3-Al2O3-SiO2 glass, the boron coordination sites are mainly of trigonal (B(3)) and tetrahedral (B(4)), and the aluminum coordination sites are Al(4), Al(5) and partly of Al(6). With the increase of BaO content in the B2O3-Al2O3-SiO2 glass, B(3) gradually changes to B(4), and Al(5), Al(6) changes to Al(4). On the other hand, compared with Ba2+, RE3+ can accumulate the boron network because of its higher field strength, which results in a large network structure. With the increase of samarium oxide, the silicate coordination Q4 (3T) will have predominance gradually. Heat-treatment has little effect on the boron and aluminum coordination sites in the glass structure.
Key words:glass forming; glass structure; magic angle spin nuclear magnetic resonance; boro-alumino-silicate glass; rare earths;
【全文内容正在添加中】