简介概要

Effect of Heat Treatment on Microstructure and Mechanical Properties of Si Cp/2024 Aluminum Matrix Composite

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第6期

论文作者:柳培 王爱琴 XIE Jingpei HAO Shiming

文章页码:1229 - 1233

摘    要:SiCp/2024 aluminum alloy matrix composite was prepared by powder metallurgy method. Effects of heat treatment on the microstructure and mechanical properties of composite were investigated by SEM, EDS, XRD, HREM, tensile and hardness tests. The experimental results showed that SiC particles distributed uniformly in the matrix and were in good combination with matrix. The tensile strength and hardness were improved significantly after heat treatment. With the increase of solid solution temperature, the alloy phases dissolved in the matrix gradually. When the solid solution temperature arrived at 505 ℃, the alloy phases dissolved thoroughly, and the composite exhibited the highest tensile strength and hardness(σb=360 MPa, HBS=104). The main strengthening phase was Al2Cu, which was granular and distributed dispersively in the matrix. Effect of T6 was better than that of T4 at the same solid solution temperature.

详情信息展示

Effect of Heat Treatment on Microstructure and Mechanical Properties of Si Cp/2024 Aluminum Matrix Composite

柳培1,王爱琴1,XIE Jingpei1,HAO Shiming2

1. School of Materials Science and Engineering, Henan University of Science and Technology2. School of Physical and Engineering, Henan University of Science and Technology

摘 要:SiCp/2024 aluminum alloy matrix composite was prepared by powder metallurgy method. Effects of heat treatment on the microstructure and mechanical properties of composite were investigated by SEM, EDS, XRD, HREM, tensile and hardness tests. The experimental results showed that SiC particles distributed uniformly in the matrix and were in good combination with matrix. The tensile strength and hardness were improved significantly after heat treatment. With the increase of solid solution temperature, the alloy phases dissolved in the matrix gradually. When the solid solution temperature arrived at 505 ℃, the alloy phases dissolved thoroughly, and the composite exhibited the highest tensile strength and hardness(σb=360 MPa, HBS=104). The main strengthening phase was Al2Cu, which was granular and distributed dispersively in the matrix. Effect of T6 was better than that of T4 at the same solid solution temperature.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号