简介概要

Improvement of electrochemical and electrical properties of LiFePO4 coated with citric acid

来源期刊:Rare Metals2016年第4期

论文作者:Majid Talebi-Esfandarani Oumarou Savadogo

文章页码:303 - 308

摘    要:LiFePO4 was synthesized using hydrothermal method and coated with different amounts of citric acid as carbon source.The samples were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscope(TEM),surface area measurement—Brunauer–Emmett–Teller(BET),discharge capability,cyclic voltammetry(CV),and electrochemical impedance spectroscopy(EIS).The results show that the quality and thickness of the carbon coating on the surface of LiFePO4 particles are very important.The optimum carbon content(about 30 wt%)can lead to a more uniform carbon distribution.Electrochemical results show that the samples containing 20 wt%,30 wt%,40 wt%,and50 wt% carbon deliver a discharge capacity of 105,167,151,and 112 mAhg-1,respectively,at the rate of 0.1C.The increase of carbon content leads to the decrease of discharge capacity of LiFePO4/C,owing to the fact that excess carbon delays the diffusion of Li+ through the carbon layers during charge/discharge procedure.The LiFePO4/C with low carbon content exhibits poor electrochemical performance because of its low electrical conductivity.Therefore,the amount of carbon must be optimized in order to achieve excellent electrochemical performance of LiFePO4/C for its application in a lithium ion battery.

详情信息展示

Improvement of electrochemical and electrical properties of LiFePO4 coated with citric acid

摘要:LiFePO4 was synthesized using hydrothermal method and coated with different amounts of citric acid as carbon source.The samples were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscope(TEM),surface area measurement—Brunauer–Emmett–Teller(BET),discharge capability,cyclic voltammetry(CV),and electrochemical impedance spectroscopy(EIS).The results show that the quality and thickness of the carbon coating on the surface of LiFePO4 particles are very important.The optimum carbon content(about 30 wt%)can lead to a more uniform carbon distribution.Electrochemical results show that the samples containing 20 wt%,30 wt%,40 wt%,and50 wt% carbon deliver a discharge capacity of 105,167,151,and 112 mAhg-1,respectively,at the rate of 0.1C.The increase of carbon content leads to the decrease of discharge capacity of LiFePO4/C,owing to the fact that excess carbon delays the diffusion of Li+ through the carbon layers during charge/discharge procedure.The LiFePO4/C with low carbon content exhibits poor electrochemical performance because of its low electrical conductivity.Therefore,the amount of carbon must be optimized in order to achieve excellent electrochemical performance of LiFePO4/C for its application in a lithium ion battery.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号