简介概要

Optimization of thermal processing parameters of Ti555211 alloy using processing maps based on Murty criterion

来源期刊:Rare Metals2016年第2期

论文作者:Zhen An Jin-Shan Li Yong Feng

文章页码:154 - 161

摘    要:Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001–1.000 s-1. The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress–strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol-1in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800–850 °C/0.001–0.010 s-1. The other peak efficiency of *60 % occurs at C950 °C/0.001–0.010 s-1, which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s-1and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed.

详情信息展示

Optimization of thermal processing parameters of Ti555211 alloy using processing maps based on Murty criterion

Zhen An,Jin-Shan Li,Yong Feng

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University

摘 要:Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001–1.000 s-1. The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress–strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol-1in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800–850 °C/0.001–0.010 s-1. The other peak efficiency of *60 % occurs at C950 °C/0.001–0.010 s-1, which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s-1and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号