Highly efficient Ag-modified copper phyllosilicate nanotube:Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate
来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第12期
论文作者:Huabo Li Yuanyuan Cui Yixin Liu Lu Zhang Quan Zhang Juhua Zhang Wei-Lin Dai
文章页码:29 - 37
摘 要:Rapidly deactivation of Cu/SiO2 catalysts at high liquid hour space velocity(LHSV) has been an important obstacle for scale-up application.Herein,silver modified copper phyllosilicate nanotubes were fabricated by different strategies,and implemented to the selective hydrogenation of ethylene carbonate(EC) to methanol and ethylene glycol(EG) as alternative route for the indirect utilization of CO2.The CuPs Ag-copre catalyst synthesized by the co-ammonia evaporation hydrothermal process achieved79% methanol and 99% EG yield within various ranges of EC LHSV,which was attributed to the balanced Cu+/Cu0 ratio and the enhanced H2 dissociation ability.Inlaid silver species over copper phyllosilicate promoted the interaction between the metal and the support,which substantially regulated the reducibility and dispersion of copper species,meanwhile,increased the stability for long-term running of the catalyst.
Huabo Li1,2,Yuanyuan Cui1,Yixin Liu1,Lu Zhang1,Quan Zhang1,Juhua Zhang1,Wei-Lin Dai1
1. Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University2. School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology
摘 要:Rapidly deactivation of Cu/SiO2 catalysts at high liquid hour space velocity(LHSV) has been an important obstacle for scale-up application.Herein,silver modified copper phyllosilicate nanotubes were fabricated by different strategies,and implemented to the selective hydrogenation of ethylene carbonate(EC) to methanol and ethylene glycol(EG) as alternative route for the indirect utilization of CO2.The CuPs Ag-copre catalyst synthesized by the co-ammonia evaporation hydrothermal process achieved79% methanol and 99% EG yield within various ranges of EC LHSV,which was attributed to the balanced Cu+/Cu0 ratio and the enhanced H2 dissociation ability.Inlaid silver species over copper phyllosilicate promoted the interaction between the metal and the support,which substantially regulated the reducibility and dispersion of copper species,meanwhile,increased the stability for long-term running of the catalyst.
关键词: