Dissolution mechanism and solubility of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K
来源期刊:中南大学学报(英文版)2014年第3期
论文作者:LI Qin-xiang(李琴香) CHEN Qi-yuan(陈启元) HU Hui-ping(胡慧萍)
文章页码:884 - 890
Key words:hemimorphite; ammoniacal solution; dissolution mechanism; solubility
Abstract: The dissolution mechanism of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The results show that hemimorphite is soluble in NH3-(NH4)2SO4-H2O system and its residue exists in the form of an amorphous SiO2 layer on the hemimorphite surface. The XPS data also indicate that the Si 2p3/2 and O 1s spectra of the hemimorphite are broadened and shift to higher binding energies and their binding energies are closer to silica with an increase of total ammonia and time. Solubility of hemimorphite in NH3-(NH4)2SO4-H2O system was measured by means of isothermal solution method at 298.15 K based on the study of the dissolution mechanism of hemimorphite. The results show that the solubility of zinc in solution increases firstly and then decreases with the increase of cT(NH3) (total ammonia concentration) at different NH3/NH4+ ratios. The solubility of silicon in solution decreases from 0.0334 mol/kg in cT(NH3)=4.1245 mol/kg NH3-(NH4)2SO4-H2O solution to 0.0046 mol/kg in cT(NH3)=7.6035 mol/kg NH3-(NH4)2SO4-H2O solution.
LI Qin-xiang(李琴香), CHEN Qi-yuan(陈启元), HU Hui-ping(胡慧萍)
(College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China)
Abstract:The dissolution mechanism of hemimorphite in NH3-(NH4)2SO4-H2O system at 298.15 K was investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The results show that hemimorphite is soluble in NH3-(NH4)2SO4-H2O system and its residue exists in the form of an amorphous SiO2 layer on the hemimorphite surface. The XPS data also indicate that the Si 2p3/2 and O 1s spectra of the hemimorphite are broadened and shift to higher binding energies and their binding energies are closer to silica with an increase of total ammonia and time. Solubility of hemimorphite in NH3-(NH4)2SO4-H2O system was measured by means of isothermal solution method at 298.15 K based on the study of the dissolution mechanism of hemimorphite. The results show that the solubility of zinc in solution increases firstly and then decreases with the increase of cT(NH3) (total ammonia concentration) at different NH3/NH4+ ratios. The solubility of silicon in solution decreases from 0.0334 mol/kg in cT(NH3)=4.1245 mol/kg NH3-(NH4)2SO4-H2O solution to 0.0046 mol/kg in cT(NH3)=7.6035 mol/kg NH3-(NH4)2SO4-H2O solution.
Key words:hemimorphite; ammoniacal solution; dissolution mechanism; solubility