一种井下人员无线定位算法研究
来源期刊:工矿自动化2020年第4期
论文作者:刘夏 李国良 张灵峰 汪郁 孙虎 黄启能 丁琼
文章页码:38 - 45
关键词:井下无线定位;指纹定位;实验小区域划分;最小二乘支持向量机;差分进化算法;人工鱼群算法;
摘 要:针对传统井下指纹定位算法存在需要采集大量指纹数据和定位精度不高的问题,提出了一种差分鱼群优化最小二乘支持向量机(DEAFSA-LSSVM)的井下人员无线定位算法.首先将井下实验区域划分为多个小区域,并利用克里金插值算法建立指纹数据库;然后利用差分进化与人工鱼群混合智能算法优化正则化参数和核函数宽度,建立最小二乘支持向量机算法模型,利用无线采集接收终端采集待定位点的无线信息数据,通过最小二乘支持向量机算法模型计算出其所属小区域;最后利用小区域内无线信息数据,通过加权K近邻算法进行实时定位.实验结果表明:该定位算法的收敛速度快,分类准确,准确率达到98.87%;定位精度高,平均定位误差为1.51 m,比未经优化的最小二乘支持向量机算法的定位精度提高18.82%.
刘夏1,李国良2,张灵峰1,汪郁1,孙虎1,黄启能1,丁琼1
1. 贵州工业职业技术学院电子与信息工程学院2. 贵州大学大数据与信息工程学院
摘 要:针对传统井下指纹定位算法存在需要采集大量指纹数据和定位精度不高的问题,提出了一种差分鱼群优化最小二乘支持向量机(DEAFSA-LSSVM)的井下人员无线定位算法.首先将井下实验区域划分为多个小区域,并利用克里金插值算法建立指纹数据库;然后利用差分进化与人工鱼群混合智能算法优化正则化参数和核函数宽度,建立最小二乘支持向量机算法模型,利用无线采集接收终端采集待定位点的无线信息数据,通过最小二乘支持向量机算法模型计算出其所属小区域;最后利用小区域内无线信息数据,通过加权K近邻算法进行实时定位.实验结果表明:该定位算法的收敛速度快,分类准确,准确率达到98.87%;定位精度高,平均定位误差为1.51 m,比未经优化的最小二乘支持向量机算法的定位精度提高18.82%.
关键词:井下无线定位;指纹定位;实验小区域划分;最小二乘支持向量机;差分进化算法;人工鱼群算法;