简介概要

KPCA和改进SVM在滚动轴承剩余寿命预测中的应用研究

来源期刊:机械设计与制造2019年第11期

论文作者:者娜 杨剑锋 刘文彬 陈良超

文章页码:1 - 12

关键词:滚动轴承;剩余寿命预测;评估指标;核主成分分析;最小二乘支持向量机;

摘    要:为解决支持向量机模型在预测滚动轴承剩余寿命时准确率不高的问题,对核主成分分析(Kernel Principal Component Analysis,KPCA)和最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)在剩余寿命预测中的应用进行了研究。采用核主成分分析方法融合轴承振动信号时域、频域特征指标并提取第一主成分评估轴承性能退化情况,并将满足要求的多个KPCA主成分作为输入,建立KPCA-LSSVM模型来对轴承剩余寿命进行预测。采用轴承全寿命试验数据对该方法的有效性进行验证,结果表明,该方法提取的轴承性能退化评估指标能够更为全面地表征轴承性能退化情况,建立的KPCA-LSSVM模型可在滚动轴承剩余寿命预测工作中获得良好的预测效果。

详情信息展示

KPCA和改进SVM在滚动轴承剩余寿命预测中的应用研究

者娜,杨剑锋,刘文彬,陈良超

北京化工大学化工安全教育部工程研究中心

摘 要:为解决支持向量机模型在预测滚动轴承剩余寿命时准确率不高的问题,对核主成分分析(Kernel Principal Component Analysis,KPCA)和最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)在剩余寿命预测中的应用进行了研究。采用核主成分分析方法融合轴承振动信号时域、频域特征指标并提取第一主成分评估轴承性能退化情况,并将满足要求的多个KPCA主成分作为输入,建立KPCA-LSSVM模型来对轴承剩余寿命进行预测。采用轴承全寿命试验数据对该方法的有效性进行验证,结果表明,该方法提取的轴承性能退化评估指标能够更为全面地表征轴承性能退化情况,建立的KPCA-LSSVM模型可在滚动轴承剩余寿命预测工作中获得良好的预测效果。

关键词:滚动轴承;剩余寿命预测;评估指标;核主成分分析;最小二乘支持向量机;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号