简介概要

基于LR-ANN-SVM的滑坡易发性评价

来源期刊:有色金属科学与工程2020年第4期

论文作者:陈飞 蔡超 李小双 钱乾

文章页码:82 - 90

关键词:神经网络;支持向量机;逻辑回归模型;滑坡风险预警;

摘    要:针对传统大数据机器学习等方法进行滑坡易发性评价时,存在过于追求模型评价精度,导致在中易发区与低易发区存在滑坡产生的风险,提出了风险预警来降低中与低易发区产生的滑坡灾害。选取神经网络模型(ANN)、逻辑回归模型(LR)、支持向量机模型(SVM) 3种学习方法,对上犹县进行滑坡易发性评价,将上犹县分为高易发区、较高易发区、中易发区、较低易发区,低易发区。由受试者工作曲线(ROC)下的面积(AUC)显示:神经网络(ANN)的AUC=0.939,逻辑回归模型(LR)的AUC=0.897,支持向量机(SVM)的AUC=0.884,均具有较高的评价精度。根据以上的易发性评价结果,得到上犹县栅格的易发性指数(LSI),然后基于MAX(LSI (LR)、 LSI(ANN)、 LSI(SVM))函数对上述模型的易发性指数取最大值,并对上犹县进行滑坡易发性评价。结果显示:LR-ANN-SVM的AUC=0.815,有较高的易发性评价精度。从高易发区与较高易发区所含滑坡占比来看,LR、ANN、SVM、LR-ANN-SVM的滑坡占比分别为80.6%、74.6%、91%、93.2%,表明根据ANN-LR-SVM易发性分区治理更安全。

详情信息展示

基于LR-ANN-SVM的滑坡易发性评价

陈飞1,2,蔡超1,李小双1,钱乾1

1. 江西理工大学资源与环境工程学院2. 江西理工大学江西省矿业工程重点实验室

摘 要:针对传统大数据机器学习等方法进行滑坡易发性评价时,存在过于追求模型评价精度,导致在中易发区与低易发区存在滑坡产生的风险,提出了风险预警来降低中与低易发区产生的滑坡灾害。选取神经网络模型(ANN)、逻辑回归模型(LR)、支持向量机模型(SVM) 3种学习方法,对上犹县进行滑坡易发性评价,将上犹县分为高易发区、较高易发区、中易发区、较低易发区,低易发区。由受试者工作曲线(ROC)下的面积(AUC)显示:神经网络(ANN)的AUC=0.939,逻辑回归模型(LR)的AUC=0.897,支持向量机(SVM)的AUC=0.884,均具有较高的评价精度。根据以上的易发性评价结果,得到上犹县栅格的易发性指数(LSI),然后基于MAX(LSI (LR)、 LSI(ANN)、 LSI(SVM))函数对上述模型的易发性指数取最大值,并对上犹县进行滑坡易发性评价。结果显示:LR-ANN-SVM的AUC=0.815,有较高的易发性评价精度。从高易发区与较高易发区所含滑坡占比来看,LR、ANN、SVM、LR-ANN-SVM的滑坡占比分别为80.6%、74.6%、91%、93.2%,表明根据ANN-LR-SVM易发性分区治理更安全。

关键词:神经网络;支持向量机;逻辑回归模型;滑坡风险预警;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号