Dynamics in simultaneous electro-generative leaching for sphalerite-MnO2

来源期刊:中国有色金属学报(英文版)2007年第5期

论文作者:肖利 邱冠周 方正 柳建设

文章页码:1045 - 1045

Key words:sphalerite mineral; electro-generative leaching; bio-oxidation; activation energy

Abstract: The principle for the electro-generative leaching was applied to simultaneous leaching of sphalerite-MnO2. A galvanic system for the bio-electro-generative leaching was set up. The effects of grain size and temperature on rate of zinc extraction from sphalerite under the conditions of presence and absence of Acidithiobacillus ferrooxidans (A.ferrooxidans) were studied, respectively. The results show that with bacteria, the maximum extraction of zinc from the ores with grain size of 16.6 μm can reach 32.01% after leaching for 12 h, while to obtain the same extraction ratio in the traditional bio-leaching route (i.e. not electro-generative one) 10 d is needed to ore granules with same size. The unreacted shrinking core model was used for describing the reaction-relative and diffusion-relative phenomena presented in the process of the electro-generative leaching with and without bacteria, which is considered to be diffusion controlled. The activation energies of the anodic reaction for leaching system in the presence and absence of bacteria are 11.97 and 14.39 kJ/mol, respectively, indicating that leaching rate can be decreased by A. ferrooxidans. SEM was used to study the effect of A. ferrooxidans on the ores in the simultaneous electro-generative leaching, which indicates that the produced sulfur on the surface of the sulfides can be oxidized by A. ferrooxidans after bio-electro-generative leaching for 24 h, and the transferred charge due to the bacterial oxidation is up to 17.86%, which is an important part of the output electric quantity.

基金信息:the National Basic Research Program of China
the Education Department Foundation of Hunan Province, China
the National Natural Science Foundation of China

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号