简介概要

Capacitance performance enhancement of TiO2 doped with Ni and graphite

来源期刊:Rare Metals2009年第3期

论文作者:WANG Honga, TANG Zhiyuana, SUN Leia, HE Yanbinga, WU Yaxiana, and LI Zhongyanb a School of Chemical Engineering and Technology, Tianjin University, Tianjin , China b McNair Technology Co., Ltd., Dongguan , China

文章页码:231 - 236

摘    要:Nano-amorphous TiO2 was prepared by a sol-gel method. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the composite electrode material (TiO2-NiO-C) is made of powder with a grain size of 36.2 nm. Doping of nickel and graphite can increase the electrical conductivity and the specific surface area of nano-amorphous TiO2. The electrochemical properties of TiO2-NiO-C, such as self-discharge, leakage current, and cycle life, were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test. With a charge-discharge current density of 500 mA/g, the specific capacity of the TiO2-NiO-C composite material reaches 12.88 mAh/g. Also, the expense of capacity is only 3.88% after 500 cycles. The electrochemical capacitor with the electrode material of TiO2-NiO-C shows excellent capacity and cycling performance.

详情信息展示

Capacitance performance enhancement of TiO2 doped with Ni and graphite

WANG Honga, TANG Zhiyuana, SUN Leia, HE Yanbinga, WU Yaxiana, and LI Zhongyanb a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China b McNair Technology Co., Ltd., Dongguan 523800, China

摘 要:Nano-amorphous TiO2 was prepared by a sol-gel method. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the composite electrode material (TiO2-NiO-C) is made of powder with a grain size of 36.2 nm. Doping of nickel and graphite can increase the electrical conductivity and the specific surface area of nano-amorphous TiO2. The electrochemical properties of TiO2-NiO-C, such as self-discharge, leakage current, and cycle life, were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test. With a charge-discharge current density of 500 mA/g, the specific capacity of the TiO2-NiO-C composite material reaches 12.88 mAh/g. Also, the expense of capacity is only 3.88% after 500 cycles. The electrochemical capacitor with the electrode material of TiO2-NiO-C shows excellent capacity and cycling performance.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号