INVESTIGATION OF LASER BEAM WELDING PROCESS OF AZ61 MAGNESIUM-BASED ALLOY
来源期刊:Acta Metallurgica Sinica2006年第4期
论文作者:Z.J. Li H.Y. Wang
Key words:magnesium alloy; laser beam welding; laser power; welding speed;
Abstract: Laser welding process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welding speed,and protection gas flow at the top and bottom is researched The results show that an ideal weld bead can be formed by choosing the processing parameters properly. An optimized parameter range is obtained by a large number of experiments. Among them, laser power and welding speed are the two main parameters that determine the weld width and dimensions. The protect gas flow rate has a slight effect on the weld width, but it directly effects the surface color of the weld. The test results for typical welds indicate that the microhardness and tensile strength of the weld zone are better than that of the base metal. A fine-grained weld region has been observed and no obvious heat-affected zone is found. The weld zone mainly consists of small α-Mg phase, (α +Al12Mg17), and other eutectic phases. The small grains and the eutectic phases in the joint are believed to play an important role in the increase of the strength of welds for AZ61 magnesium alloys.
Z.J. Li1,H.Y. Wang1
(1.Industrial Center, Shenzhen Polytechnic, Shenzhen 518055, China)
Abstract:Laser welding process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welding speed,and protection gas flow at the top and bottom is researched The results show that an ideal weld bead can be formed by choosing the processing parameters properly. An optimized parameter range is obtained by a large number of experiments. Among them, laser power and welding speed are the two main parameters that determine the weld width and dimensions. The protect gas flow rate has a slight effect on the weld width, but it directly effects the surface color of the weld. The test results for typical welds indicate that the microhardness and tensile strength of the weld zone are better than that of the base metal. A fine-grained weld region has been observed and no obvious heat-affected zone is found. The weld zone mainly consists of small α-Mg phase, (α +Al12Mg17), and other eutectic phases. The small grains and the eutectic phases in the joint are believed to play an important role in the increase of the strength of welds for AZ61 magnesium alloys.
Key words:magnesium alloy; laser beam welding; laser power; welding speed;
【全文内容正在添加中】