简介概要

Structural,morphological,and optical properties of tin(Ⅳ) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

来源期刊:International Journal of Minerals Metallurgy and Materials2017年第9期

论文作者:J.Celina Selvakumari M.Ahila M.Malligavathy D.Pathinettam Padiyan

文章页码:1043 - 1051

摘    要:Tin oxide(SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea(Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles’ band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

详情信息展示

Structural,morphological,and optical properties of tin(Ⅳ) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

J.Celina Selvakumari,M.Ahila,M.Malligavathy,D.Pathinettam Padiyan

Department of Physics,Manonmaniam Sundaranar University

摘 要:Tin oxide(SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea(Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles’ band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号